抗原加工途径的硅硅建模准确性对于实现个性化表位疫苗设计至关重要。这种途径的一个重要步骤是,蛋白酶体将疫苗降解为较小的肽,其中一些将由MHC复合物呈现给T细胞。虽然最近预测MHC肽的表现引起了很多关注,但鉴于高通量质谱的MHC连接学的最新进展,蛋白酶体裂解预测仍然是一个相对未探索的区域。此外,由于这种实验技术不允许识别无法分裂的区域,因此最新的预测因子会在训练时会产生合成的负样本并将其视为真正的负面样本,即使其中一些实际上可能是肯定的。因此,在这项工作中,我们提出了一个新的预测指标,该预测因素通过扩展的数据集和稳固的未标记学习理论基础进行了培训,从而实现了蛋白酶体裂解预测的新最新。改进的预测能力反过来又可以使更精确的疫苗开发提高基于表位的疫苗的功效。可以在https://github.com/schubertlab/proteasomal-cleavage-puupl上获得代码和预估计的模型。
translated by 谷歌翻译
在最近的工作中已显示出一种模式指导的对话管理方法,可以有效地创建能够充当友好同行或任务助理的强大定制虚拟代理。但是,这些方法在开放式,混合初始性领域中的成功应用仍然难以捉摸 - 尤其是在诸如虚拟标准化患者之类的医疗领域,在这种复杂的互动很常见的情况下 - 比以前的系统需要更广泛,更灵活的对话管理能力提供。在本文中,我们描述了用于开发索菲(Sophie)的通用架构指导的对话管理框架,Sophie是一种虚拟标准化的癌症患者,可让医生方便地练习与患者的互动。我们对医学生和索菲之间的对话进行了众包评估。我们的经纪人被认为是自然,情感上适当的反应,并且与她作为癌症患者的角色一致。此外,它大大优于对人类标准化患者语料库进行微调的端到端神经模型,这证明了模式引导方法的优势。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
积极的未标记(PU)学习旨在仅从积极和未标记的培训数据中学习二进制分类器。最近的方法通过发展无偏的损失功能通过对成本敏感的学习解决了这一问题,后来通过迭代伪标记解决方案改善了其性能。但是,这样的两步程序容易受到错误估计的伪标签的影响,因为在以后的错误预测训练新模型时,在以后的迭代中传播了错误。为了防止这种确认偏见,我们提出PUUPL是PU学习的新型损失不足的训练程序,该程序将认知不确定性纳入伪标签选择中。通过使用基于低确定性预测的神经网络的合奏并分配伪标记,我们表明PUUPL提高了伪标签的可靠性,提高了我们方法的预测性能,并导致了新的最先进的结果在自我训练中进行PU学习。通过广泛的实验,我们显示了方法对不同数据集,模式和学习任务的有效性,以及改进的校准,对先前拼写错误的稳健性,偏见的正数据和不平衡数据集。
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
We address the problem of extracting key steps from unlabeled procedural videos, motivated by the potential of Augmented Reality (AR) headsets to revolutionize job training and performance. We decompose the problem into two steps: representation learning and key steps extraction. We employ self-supervised representation learning via a training strategy that adapts off-the-shelf video features using a temporal module. Training implements self-supervised learning losses involving multiple cues such as appearance, motion and pose trajectories extracted from videos to learn generalizable representations. Our method extracts key steps via a tunable algorithm that clusters the representations extracted from procedural videos. We quantitatively evaluate our approach with key step localization and also demonstrate the effectiveness of the extracted representations on related downstream tasks like phase classification. Qualitative results demonstrate that the extracted key steps are meaningful to succinctly represent the procedural tasks.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
In training neural networks, batch normalization has many benefits, not all of them entirely understood. But it also has some drawbacks. Foremost is arguably memory consumption, as computing the batch statistics requires all instances within the batch to be processed simultaneously, whereas without batch normalization it would be possible to process them one by one while accumulating the weight gradients. Another drawback is that that distribution parameters (mean and standard deviation) are unlike all other model parameters in that they are not trained using gradient descent but require special treatment, complicating implementation. In this paper, I show a simple and straightforward way to address these issues. The idea, in short, is to add terms to the loss that, for each activation, cause the minimization of the negative log likelihood of a Gaussian distribution that is used to normalize the activation. Among other benefits, this will hopefully contribute to the democratization of AI research by means of lowering the hardware requirements for training larger models.
translated by 谷歌翻译
Support Vector Machines have been successfully used for one-class classification (OCSVM, SVDD) when trained on clean data, but they work much worse on dirty data: outliers present in the training data tend to become support vectors, and are hence considered "normal". In this article, we improve the effectiveness to detect outliers in dirty training data with a leave-out strategy: by temporarily omitting one candidate at a time, this point can be judged using the remaining data only. We show that this is more effective at scoring the outlierness of points than using the slack term of existing SVM-based approaches. Identified outliers can then be removed from the data, such that outliers hidden by other outliers can be identified, to reduce the problem of masking. Naively, this approach would require training N individual SVMs (and training $O(N^2)$ SVMs when iteratively removing the worst outliers one at a time), which is prohibitively expensive. We will discuss that only support vectors need to be considered in each step and that by reusing SVM parameters and weights, this incremental retraining can be accelerated substantially. By removing candidates in batches, we can further improve the processing time, although it obviously remains more costly than training a single SVM.
translated by 谷歌翻译
In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance.
translated by 谷歌翻译